CAE Energy Program


Canadians enjoy one of the highest qualities of life on the planet thanks in no small part to our energy resources and our knowledge of how to exploit them. In order for these resources to bring more benefit to Canada and in order to pass this rich legacy to our children and grandchildren we need to address the pressing issues of climate change. How to develop energy resources in a manner that is consistent with a sustainable, circular economy that meets the constraints of a global climate change mitigation strategy is one of the great engineering challenges of our time.

Read more here.

Webinar #1 – Series on Net-Zero Emissions
Maintaining Canada’s Economic Prosperity while Achieving Net-Zero by 2050

Hosted by the Canadian Academy for Engineering, the 1st  webinar in a series dedicated to net-zero emissions was held on January 28th, 2021.  Click here to view the Video.

Governments around the world are under pressure to undertake urgent and bold actions to deliver huge greenhouse gas emissions reductions to avoid the catastrophic effects of a warming climate. Many countries have committed to transition to a net-zero economy by 2050. In November 2020, Canada also made a commitment to achieve net-zero. The Canadian Net-Zero Emissions Accountability Act was tabled to set rolling five-year binding emissions-reduction targets and chart pathways to net-zero by 2050.

A review on the history of climate change agreements, including strategies to limit global temperature increase to 1.5°C, and technologies that are being promoted globally for displacing fossil fuels.

Panelists provided some alterative mitigation pathways for Canada towards achieving net-zero by 2050, while at the same time growing the economy and transforming Canada’s energy systems. This will include presentation of results of earlier studies, and potential impacts of recent promising Canadian technological developments and initiatives.


Moderated by:  Soheil Asgarpour FCAE, President, Petroleum Technology Alliance Canada (PTAC)

Webinar #2 – Series on Net-Zero Emissions
Achieving net-zero by 2050: challenges and opportunities of electrification and electric cars

Held on March 3rd, 2021 at 12:00 pm EST, the Canadian Academy of Engineering, in collaboration with National Engineering Month, hosted its second webinar dedicated to net-zero emissions. The focus of this seminar is to discuss the challenges and opportunities of electrification and electric cars.

The following are some of the topics which will be touched on in the webinar:

  • Peter will discuss the role of electric and autonomous vehicles in achieving net-zero, and the future of the Canadian automotive industry;
  • Christian will discuss the challenges and opportunities of electrification in the Quebec’s context.

Click here to view the video.


Peter Frise, Professor of Mechanical and Automotive Engineering, University of Windsor
Christian Bélanger, Director Scientific Research, Hydro-Québec Research Institute

Moderator: Soheil Asgarpour, President, Petroleum Technology Alliance Canada (PTAC)

Webinar #3 – Series on Net-Zero Emissions
Nuclear Fission and Fusion: Widening the Path to Net-Zero

On Tuesday, June 15, 2021 the Canadian Academy of Engineering (CAE), in Collaboration with Society of Petroleum Engineers (SPE), and Petroleum Technology Alliance Canada (PTAC) hosted its 3rd Net-Zero webinar, titled Nuclear Fission and Fusion: Widening the Path to Net-Zero.

Presentations were heard by speakers Ali Siddiqui, Axel Meisen, and Philip Hildebrandt.

Axel will discuss the challenges and opportunities towards commercialization of fusion technologies, and applications in meeting the net-zero target by 2050. Philip will present his views on the application of existing and emerging nuclear technologies in meeting the net-zero target by 2050. Given the fact the SMR will have a higher per unit energy cost than the large nuclear reactors, Ali will discuss the application of SMR in meeting the net-zero target.

Click here to view the video.


Axel Meisen, C.M., Ph.D., P.Eng, EurIng., FCAE, FCIC, FIEI
Philip Hildebrandt
Ali Siddiqui


Soheil Asgarpour, Ph.D, FCAE, FCIM, FCSSE, P.Eng.

CAE – Conference Board of Canada Project “Trillions of dollars in investment needed to green our economy”

The CAE’s joint project with the Conference Board of Canada examining the economic impact of implementing the recommendations of the Trottier Energy Futures Project is drawing to a conclusion, with the final report issued on 6 September.  The two organizations will jointly present a webinar on the results on 8 September and have briefed a number of federal government officials on the results.

Our analysis reached several conclusions:

  • Introducing a carbon tax leads to higher prices across the economy which reduce purchasing power.
  • Revenue recycling and the depreciation of the exchange rate provide important offsetting impacts.
  • Overall, the negative impact on the economy from the carbon tax studied in this analysis is small, but so also is the reduction in GHGs.
  • Pricing carbon and decarbonizing our electricity system will need to be accompanied by trillions in investment spending on clean energy infrastructure and significant changes to the way we consume energy to achieve our commitments under the Paris Agreement.

The full report may be downloaded here:

ECC COP 22 Report cites CAE joint research

The Trottier Energy Futures Project, which was finalized in April 2016, was one of the primary references cited by Environment and Climate Change Canada in its report “Canada’s Mid-Century Long-Term Low-Greenhouse Gas Development Strategy”. ECC posted it at the conclusion of the COP 22 meeting in Marrakech. It is Canada’s contribution, as part of the commitment for each of the three North American countries, to define a plan for North America to achieve reductions in GHG emissions of 70 to 90% below 2010, by 2050, as per the Paris Agreement.

Trottier Energy Futures Project Executive Summary, Project Summary and Final Report

The Executive Summary and Project Summary for the TEFP describe the methods and results of the project, as well as recommendations for potential transition paths for the Canadian energy supply and demand systems.

This Presentation of the final results was made on 5 April 2016 at Ecole Polytechnique.

Trottier Energy Futures Project – Final Report

Engineering in Canada supplement – Globe and Mail

This supplement on Engineering in Canada, published in the 23 May edition of the Globe and Mail, features an article on the Trottier Energy Futures Project, as discussed by project manager Oskar Sigvaldason, FCAE and researcher Bob Evans, FCAE. There is also an article featuring Paul Acchione, who will be inducted as a Fellow of the CAE in June. Finally, it introduces Paul Amyotte, FCAE, incoming President of Engineers Canada.

Engineering in Canada supplement

Explaining Canadian oil and gas: From where do emissions come? Where are they going?

by Tyler Bryant, David Suzuki Foundation, for the Trottier Energy Futures Project

Pages from Greenhouse Gas Emissions from the Canadian Oil and Gas SectorIt could be said that in 2013 Canada was defined by its oil and gas sector. In a year highlighted by climate change activism, infrastructure and pipelines, economic growth, interprovincial relations and relations to the U.S. and now Asia, the fossil fuel industry was always in the news. With all the discussion and arguments around diluted bitumen, liquefied natural gas, carbon, greenhouse gases, exports and pipeline capacity it’s easy to lose track of just what we’re discussing and why it matters. How much dilbit (diluted bitumen) are we producing? How much do we import and export? What are the greenhouse gases from all this activity? As a primer, the David Suzuki Foundation and the Canadian Academy of Engineering decided to take stock of the oil and gas sector’s development over the past 35 years and describe how it has changed and why those changes are important.

In our report we used the CanESS model by WhatIf Technologies to develop a fact base for oil and gas production and emissions in Canada. The report outlines historical trends in production and emissions by fossil fuel extraction industries, trends in the carbon intensity of fossil fuel extraction, a projection of where production may be going and what the magnitude of emissions may be by 2050.

We broke Canadian oil and gas production into three main categories: natural gas, conventional oil and oil sands products. Natural gas production more than doubled from 1978 until the mid-2000s, with increases in production stimulated by exports to the U.S. Greenhouse gas emissions (GHG) from natural gas extraction, processing and fugitive emissions increased from 28 million tonnes in 1978 to 71 million by 2007.

Canadian oil production tells another story. Conventional gas production has been in decline for the past 10 years but that of oil has continued unabated. Obviously this highlights the impact of the huge growth in oil sands’ production.

Oil sands products are essentially two different types of commodities: synthetic crude and diluted bitumen (or dilbit). The processes for creating each commodity are generally distinct with most synthetic crude being produced from surface mining and most diluted bitumen produced using in-situ recovery.

For surface mining, the raw oil sand is extracted and transported to upgrading facilities. The bitumen is then separated from the sand using crushers, hot water and steam, and then upgraded to synthetic crude oil using hydrogen in the upgrader. Each process requires energy which result in significant GHG emissions from the upgrading process. Mining and crushing are electrically powered and do not have direct emissions, while transport, separation and upgrading use natural gas and other fuels. In-situ recovery currently uses hot water and steam to liquefy the bitumen underground. The production of steam and hot water consumes the most energy.

O&G Chart 2.png


O&G chart 3.png

Looking into the future, we modelled what the impact may be of increasing oil sands production to compensate for shrinking conventional reserves along with a significant expansion of natural gas production from LNG exports. We projected that B.C. would produce 82 million tonnes of LNG and that oil sands would continue to grow but at a potentially slower pace due to capacity constraints.  As you can see, unconstrained LNG exports would have a very large effect on emissions unless there were new technology or policy actions used to limit them. Oil sands production and GHG emissions would more than double by 2050 but the drop in conventional production would serve to dampen the total emissions increase from oil production.

O&G Chart 4.png

This is just a brief sampling of the data we’ve presented in our report to provide a better understanding of the energy and emissions intensity of fossil fuel extraction in Canada. We also corroborated our findings with other leading reports and outlined how technology and policy may be used to ensure the Canadian fossil fuel sector can achieve its GHG reduction targets.

Download report

Trottier Energy Futures Project cited for Bayer award

We are pleased to report that the Trottier Energy Futures Project was recently cited by Bayer Canada as part of Bayer’s 150th anniversary saluting Canadian innovators who embody Bayer’s philosophy: Science for a Better Life, under the renewable energy category. The award was given at a special ceremony on Tuesday, May 28 in Toronto.

Michael E. Charles, FCAE, Lorne Trottier, FCAE and Ralph Torrie

Michael E. Charles, FCAE, Lorne Trottier, FCAE and Ralph Torrie

Trottier Energy Futures Project – Background

Engineers, environmentalists and philanthropists are joining forces to develop solutions for Canada’s energy future. The Canadian Academy of Engineering, the David Suzuki Foundation and the Trottier Family Foundation have launched the “Trottier Energy Futures Project”, named for entrepreneur, engineer and philanthropist Lorne Trottier, whose family foundation is providing major funding for a multi-year project.

For more information, visit the Trottier Energy Futures Project website.