Net Zero Emissions (#1): Climate Change Solution?

Eddy Isaacs, FCAE

for

The Canadian Academy of Engineering

L’Académie canadienne du génie
International efforts to deal with climate change

1. 1988 – IPCC* came into existence
 Objective: “to assess scientific, technical, and socioeconomic information that is relevant in understanding human-induced climate change, its potential impacts, and options for mitigation and adaptation.”
 - Series of IPCC Assessment Reports; from 1990 with Fifth Report in 2014
 - Sixth Report to be finalized in 2022

2. 1992 - Rio Earth Summit
 - 1994 – UNFCCC** ratified → 197 parties
 Objective: “stabilize GHG concentrations in the atmosphere at a level that would prevent dangerous anthropogenic interference with the climate system”
 - Canada: Remain at 1990 levels

*International panel on climate change
**United Nations Framework Convention on Climate Change
International efforts to deal with climate change

 – Canada formally withdraws from Kyoto Accord – 2011

 – Canada: 17% below 2005 by 2020

5. COP 21 Paris - 2015
 – Canada: 30% below 2005 by 2030

6. IPCC Special Report – 2018
 – Mitigation pathways to limit increase to 1.5°C

7. Many Countries & Industries commit to net zero by 2050
 – 2018 to 2020
Four main targets

1. “Holding the increase in the global average temperature to well below 2°C above pre-industrial levels and pursuing efforts to limit the temperature increase to 1.5 °C “ (article 2a,UNFCCC)

2. Countries must demonstrate increasing ambitions (5-year reviews)

3. Increase the capacity to adapt to the existing impacts of climate change

4. Mobilize funds from “developed countries” to support climate mitigation and adaptation in “developing countries”
THE PARIS AGREEMENT CALLS FOR AN EARLY PEAK IN EMISSIONS, THEN A DECLINE TO NET-ZERO EMISSIONS DURING THE SECOND HALF OF THE CENTURY

Net zero emissions

- Net zero emissions refers to achieving an overall balance between greenhouse gas emissions produced and greenhouse gas emissions taken out of the atmosphere.
 - Equivalent terms: Carbon Neutral, Climate Neutral

- How to achieve?
 - Reduce human caused emissions (e.g., fossil fuel use) to as close to zero as possible
 - Remaining GHGs would be balanced with equivalent amount of carbon removal (forest management, CCS, direct air capture and storage, buying offsets).
Net-zero emissions: Countries

<table>
<thead>
<tr>
<th>Country</th>
<th>Target year</th>
<th>Status</th>
</tr>
</thead>
<tbody>
<tr>
<td>Suriname</td>
<td>Achieved</td>
<td></td>
</tr>
<tr>
<td>Bhutan</td>
<td>Achieved</td>
<td></td>
</tr>
<tr>
<td>Sweden</td>
<td>2045</td>
<td>In law</td>
</tr>
<tr>
<td>UK</td>
<td>2050</td>
<td>In law</td>
</tr>
<tr>
<td>France</td>
<td>2050</td>
<td>In law</td>
</tr>
<tr>
<td>Denmark</td>
<td>2050</td>
<td>In law</td>
</tr>
<tr>
<td>New Zealand</td>
<td>2050</td>
<td>In law</td>
</tr>
<tr>
<td>Hungary</td>
<td>2050</td>
<td>In law</td>
</tr>
<tr>
<td>EU</td>
<td>2050</td>
<td>Proposed legislation</td>
</tr>
<tr>
<td>Canada</td>
<td>2050</td>
<td>Proposed legislation</td>
</tr>
<tr>
<td>South Korea</td>
<td>2050</td>
<td>Proposed legislation</td>
</tr>
<tr>
<td>Spain</td>
<td>2050</td>
<td>Proposed legislation</td>
</tr>
<tr>
<td>Chile</td>
<td>2050</td>
<td>Proposed legislation</td>
</tr>
<tr>
<td>Fiji</td>
<td>2050</td>
<td>Proposed legislation</td>
</tr>
</tbody>
</table>

Data as of Dec. 7, 2020
Source: [Energy & Climate Intelligence Unit Net Zero Tracker](https://energy-climate-intelligence.org/net-zero-tracker/)

Note: The information is based on the Energy & Climate Intelligence Unit Net Zero Tracker as of Dec. 7, 2020.
Phase-out of fossil fuel vehicles

- **Norway** banning Internal Combustion Engines (ICE) by 2025
 - Market share of EVs 55% in 2020
 - Free charging stations and subsidies for EVs
- **UK** banning sale of petrol and diesel cars by 2035
 - No gas-emitting vehicles on the road by 2050
- **Iceland committed to ban ICE by 2030**
 - Part of Iceland’s climate goal of reducing CO₂ emissions by half by 2030
 - Abolish gas-powered vehicles by 2050
- **Other countries with plans to disallow gas-fuelled cars**
 - China – no time commitment
 - Costa Rica – 2050
 - Denmark – 2030
 - France – 2040
 - Ireland – 2030
 - Netherlands – 2030
 - Singapore – 2040
 - Slovenia – 2030
 - Sri Lanka 2040
 - Sweden - 2030
Required Outcomes in 2050 to hold to 1.5°C

<table>
<thead>
<tr>
<th>Required Outcomes</th>
<th>Scenario 1</th>
<th>Scenario 2</th>
<th>Scenario 3</th>
<th>Scenario 4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Final energy demand (rel. to 2010)</td>
<td>-32%</td>
<td>-5%</td>
<td>+21%</td>
<td>+44%</td>
</tr>
<tr>
<td>CO₂ emission change (rel. to 2010)</td>
<td>-93%</td>
<td>-95%</td>
<td>-91%</td>
<td>-97%</td>
</tr>
</tbody>
</table>

What increases (rel. to 2010)?

<table>
<thead>
<tr>
<th>What increases</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Nuclear</td>
<td>100% to 500%</td>
</tr>
<tr>
<td>Renewables (non-biomass)</td>
<td>830% to 1140%</td>
</tr>
<tr>
<td>Biomass</td>
<td>-11% to 418%</td>
</tr>
<tr>
<td>Renewable shares in electricity</td>
<td>70% to 81%</td>
</tr>
<tr>
<td>Cumulative CCS/BECCS until 2100 (GtCO₂)</td>
<td>350 to 1190</td>
</tr>
</tbody>
</table>
2018 IPCC special report: Analysis of the technology solutions
Key Elements of a climate change plan – limit to 1.5^0C

1. Conservation and energy efficiency

2. Fuel switching to renewable energy
 - Several countries have wind and solar targets
 - Biomass for heat and power?

3. Transport, buildings and industrial electrification (low carbon sources)
 - Biofuels?
 - Nuclear
 - Hydrogen
 - Other (hydro, tidal etc.)
Key Elements of a climate change plan – limit to 1.5^0C

4. ‘Greening’ fossil fuels production
 – Reduction in energy intensity
 – Leaving the fossil fuels in the ground

5. Carbon capture and geological storage

6. Negative emissions
 – Forestation, forest products
 – Increase soil carbon
 – Bioenergy with carbon capture and storage
 – Direct air capture
Fossil fuels still supply 84% of world energy

Global Energy Consumption in 2019

Source: BP Statistical Review 2020
‘Renewable’ energy in the 28 E.U. countries in 2015 and IPCC guidelines

IPCC guidelines for biomass and biofuels:

- Emissions going to the atmosphere are not counted
- Count emissions from:
 - harvesting and regrowth
 - land-use changes
 - use of fertilizers,
 - processing of the feedstock
 - transportation
 - methane and nitrous oxide emissions
The biomass loophole

- Declaration that biofuels are carbon neutral
 - Surge in wood use in EU countries

- Good or bad assumption?
 - Wood emits more CO$_2$ than fossil fuel per unit of energy released (3x more emissions than natural gas)
 - + loss of future carbon sequestration from the growing trees
 - + loss of soil carbon consequent to disturbance.
 - + Processing efficiency of biomass less than coal

Time horizon: instantaneous CO$_2$ release vs decades of re-growth
- carbon debt ranges from 44 – 104 years

Conclusion: Use of forestry biomass releases higher levels of emissions than coal

Subsidies for biomass energy in the 27 EU states increased 143% between 2008 and 2018.

- Consumption of biomass has increased by 65 per cent in the past 10 years (Eurostat 2019)
- U.K. more than tripled its consumption primarily due to the conversion of coal plants to biomass-fired power generation
Status of nuclear energy

- 440 nuclear power reactors operating in 32 countries (2020)
- China 1990: 0 operating nuclear power plants
- China 2019: 46 nuclear plants in operation, 11 under construction
- Worldwide (2020): 186 nuclear reactors shut down permanently; replacement mainly by natural gas
- Germany shutting all nuclear plants by 2022
- France’s electricity is 75% from nuclear energy
 - No new plants built for over 20 years
 - Government policy is to reduce the share of nuclear to 50% by 2035
- In Canada last nuclear plant (Darlington) came into service in 1993 – 5 years later than scheduled and at a cost of $14.4 billion more than triple the initial estimate of $3.9 billion
Renewed hope for nuclear power

<table>
<thead>
<tr>
<th></th>
<th>Small modular reactors</th>
<th>Advanced fission</th>
<th>Fusion</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>SMRs are a slimmed-down version of conventional fission reactors</td>
<td>Safer than traditional water-cooled reactors;</td>
<td>Technical progress is still slow after decades of investment</td>
</tr>
<tr>
<td></td>
<td>- less power</td>
<td>- coolants such as liquid sodium or molten salts</td>
<td>Containing the plasma</td>
</tr>
<tr>
<td></td>
<td>- use off-the-shelf components</td>
<td>- Most advanced “pebble bed” reactor, cooled by helium</td>
<td>- magnetic confinement</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>- inertial confinement</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>- magnetized target fusion</td>
</tr>
<tr>
<td>Companies</td>
<td>NuScale Power</td>
<td>China National Nuclear Corporation, TerraPower, Terrestrial Energy</td>
<td>ITER, TAE Technologies, General Fusion,</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Commonwealth Fusion Systems</td>
</tr>
<tr>
<td>Power output</td>
<td>50-200 megawatts</td>
<td>190-600 megawatts</td>
<td>100-500 megawatts</td>
</tr>
<tr>
<td>Available</td>
<td>2026</td>
<td>Pebble bed in 2020</td>
<td>No earlier than 2035</td>
</tr>
<tr>
<td></td>
<td></td>
<td>sodium-cooled by 2025</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>molten salt by 2030</td>
<td></td>
</tr>
</tbody>
</table>
Industrial and transport electrification - Hydrogen

- Grey H₂ – Steam methane reforming (SMR) of natural gas ~ $1/kg
 - 98% of world production
- Blue H₂ – SMR plus carbon capture and storage (CCS) ~ $1.50/kg
 - Alberta’s focus
- Green H₂ – electrolysis ~ $4.50/kg
 - Push by E.U. and Middle East
 - Works for cheap wind and solar
- Use: long distance trucking, fuel for cargo ships and aircraft
Hydrogen – Highs and lows

- Alberta one of the largest producers and users of H₂ (grey)
- Alberta can become a world leader in blue H₂
- Can be shipped as ammonia
 - Burned in power plants with no emissions
- Green H₂ from renewable energy creates no emissions
 - Quebec, BC, Manitoba - Provinces with excess hydro
- Requires plenty of energy to produce
- Difficult to transport
- Difficult to store
- Market is uncertain
- Transportation use dependent on success of fuel cell technology
- There is a limit to the % CO₂ that can be captured from blue H₂
Canada’s GHG Emissions and International Commitments, 1990 to 2030

Canada determined to achieve new commitments (net zero)

- **Canadian Net-Zero Emissions Accountability Act (Nov. 2020)**
 - Achieve net-zero emissions by 2050 in law
 - Five-year milestones for interim emissions reduction targets

- **Canada’s Climate Plan (A Healthy Environment and a Healthy Economy)**
 - Increase carbon price to reach $170 per tonne of CO$_2$e in 2030
 - $1.5-billion to increase the production and use of low-carbon fuels
 - Added $287 million/2 yr. for incentives for zero-emission vehicles
 - Added $150 million in vehicle charging and refueling stations

- **Federal Clean Fuel Regulations (CFR)**
 - Liquid fossil fuel suppliers required to reduce the carbon intensity of the fuels by 13% by 2030 (from 2016 levels)

- More coming
Summary

- Paris Agreement: A global signal that climate change is a serious issue that needs to be addressed
 - Seeks to phase out fossil fuels as rapidly as possible
 - Ignores proper accounting for biomass and biofuel burning

- **Global survey** - Public belief in the climate emergency
“People’s Climate Vote”: UNDP Survey (Jan. 2021)

Policy priorities:
1. Conservation of forests and land (54% support)
2. Solar, wind and renewable power (53%)
3. Climate-friendly farming techniques (52%)
4. Investing more in green businesses and jobs (50%)
 - Least popular: Plant based diets (30%)

- 1.2 million in 40 countries: 64% of people said that climate change was an emergency
- UK: 81%, Canada: 75%, US: 65%
Summary

- Paris Agreement: A global signal that climate change is a serious issue that needs to be addressed
 - Seeks to phase out fossil fuels as rapidly as possible
 - Ignores proper accounting for biomass and biofuel burning

- A serious shortfall in meeting pledged emissions reductions by 2030 (UN Emissions Gap Report 2019)
 - Temperatures can be expected to rise to 3.2°C this century based on pledges in Paris

- Goal of limiting the temperature increase to “well below 2 degrees” not on sound technical and engineering footing
Opportunities

- Build on Canada’s competitive advantage and pursue a distinct strategy
 - Planning based on rigorous scientific and engineering data and modelling - consider the structure of the country’s economy
- Electrification focus – hydrogen, nuclear, expand renewables, hydro
- Strategies for forest sector, soil carbon sequestration
- Focus also on adapting to a warmer world
 - increase investments in infrastructure to protect communities from the threat of sea-level rise and those at risk from extreme weather events
Thank you

EddyIsaacsInc@gmail.com