

Engineering in Canada's Northern Oceans

Research and Strategies for Development
A Study for the Canadian Academy of Engineering

Canadian Northern Research Centres

- Inventory of Canadian Centres oriented towards Northern Research
- Can be divide into "Doers", "Studiers" and "Coordinator/Funders"
- Most current and recent research is well documented and searchable on the internet.
- There is an extensive body of older and still relevant research that is not accessible over the internet.

Inventory of Canadian Centres

- ArcticNet
- Centre for the North (CFN)
- Canadian Polar Commission (Government of Canada)
- Canadian High Arctic Research Station (CHARS)
- C-CORE, LOOKNorth & CARD (centres within C-CORE)
- Canadian Network of Northern Research Operators
- Arctic Institute of North America (at University of Calgary)
- NRC Arctic Program
- Program of Energy Research and Development (PERD)
- Polar Continental Shelf Program (PCSP)
- BREA Beaufort Regional Environment Assessment 2011-14
- Environmental Studies Research Funds (ESRF), CAPP supported
- The Canadian International Centre for the Arctic Region

Doers – get their hands cold

ArcticNet

Network of universities, well funded, science

C-CORE, LOOKNorth & CARD

Engineering studies, desk and field

NRC Arctic Program

Engineering R&D, desk and field

Canadian High Arctic Research Station (CHARS)

- Arctic science and technology
- Under construction in Cambridge Bay

Studiers – shape policy

- Centre for the North (CFN)
 - Conference Board; links to Aboriginal communities
- Canadian Polar Commission
 - Government of Canada agency
- The Canadian International Centre for the Arctic Region
 - International coordination

Coordinator/Funders

- Canadian Network of Northern Research Operators
 - Logistics coordination
- Arctic Institute of North America (University of Calgary)
 - Extensive library
- Program of Energy Research and Development (PERD)
 - **\$\$\$**
- Polar Continental Shelf Program (PCSP)
 - \$\$\$ in kind
- BREA Beaufort Regional Environment Assessment 2011-14 (AAND)
 - **\$\$\$**
- Environmental Studies Research Funds (ESRF), CAPP supported
 - **\$\$\$**
- Petroleum Research Newfoundland & Labrador (PRNL)
 - \$\$\$\$\$\$\$\$\$\$

Canadian Arctic Expertise Past Glories

- The study of ice and ice mechanics dates back to the early 1900s. Professor Barnes at McGill studied ice strength and ice loads on bridge piers.
- The National Research Council in Ottawa had ice experts who studies the possibility of reinforced ice to make aircraft carriers to defend the Atlantic convoys during WW2 (Habbakuk Project).
- The case histories have outlined how commencing on about 1970, Canadians were leaders in developing methods for offshore drilling in the Beaufort Sea.

Today's Situation

- Many of today's Canadian Arctic offshore engineers developed their skills in the first phase of Beaufort Sea exploration commencing in about 1970.
- At that time the Canadian oil companies were prominent in pushing the technology envelope.
- Today, with the exception of one, most Internationals headquarter their Arctic R&D in their home countries (e.g. Houston!).
- They do use Canadian expertise but control it from their HQs

Today's Capabilities

- A current survey indicates a total of about 120
 Canadian Arctic 'engineering` experts.
- Geographically they are distributed as follows
 - Vancouver and the island 16
 - Calgary 42
 - Ottawa -20
 - St John's 37
 - Other Canadian and International 9

By Organization

- Oil Companies 20
- Large Consulting Companies 11
- Small Consulting Companies 31
- Universities 7
- Institutes 25
- Government 32

Codes and Standards

- Canadian code development
 - CSA offshore structures code (CSA-S470 series)
 - TC Arctic Shipping Pollution Prevention Regulations (ASPPR)
- Harmonized international standards
 - ISO 19906 Arctic offshore structures
 - IACS/IMO Polar Code

Canadian offshore structures code (S470 series)

- CAN/CSA-S471-92 General Requirements,
 Design Criteria, the Environment, and Loads
 - first limit-states, reliability-based offshore standard, with target safety levels, load and resistance partial factors
 - Canadian engineering expertise was the foundation of these standards

Arctic Shipping Pollution Prevention Regulations (ASPPR)

- Response to SS Manhattan voyages
- Regulate navigation in Canadian waters above 60°N latitude (1972)
 - Divided the Canadian Arctic into Shipping Safety
 Control Zones
 - Established a number of Arctic Class ships
 - Time table regulated when various ice class ships were allowed to enter each Control Zone
- Revised in 1989 and 1996
- 25 years of experience incorporated

Harmonized international standards

- CAN/CSA-ISO 19906:11 Arctic offshore structures
 - Canadian engineers played a leading role
 - Based on S471
- International Association of Classification Societies (IACS)
 - harmonized classifications for Arctic vessels
- International Maritime Organization (IMO)
 - is developing a mandatory International Code of Safety for Ships Operating in Polar Waters.
 - Based on IACS Polar Classes
 - Canadian engineers to the IACS and IMO effort

CAN/CSA-ISO 19906:11 Arctic offshore

NOT FOR RESALE.

PUBLICATION NON DESTINÉE À LA REVENTE

structures

CAN/CSA-ISO 19906:11

(ISO 19906:2010, IDT) National Standard of Canada

Petroleum and natural gas industries — Arctic offshore structures

Case Studies demonstrating Canadian Experience

- Voisey's Bay
- Arctic Islands; Exploration and Pilot Production
- Arctic Pilot Project

Voisey's Bay

- nickel deposit discovered 1993
- Purchased by INCO in 1996
- 6 years of negotiations
 - government of Newfoundland and Labrador
 - Labrador Innu and Inuit
- mine began operation in 2005 with the first concentrate shipped in October of that year
- ~ 30 year life of mine

Voisey's Bay

- Ice conditions
- Marine terminal
- Ship and shipping operation
- Shared use of ice cover
 - No shipping December 7 to January 21
 - Shipping in ice with 'bridge' Jan. 22 to April 6
 - Again April 7 to May 21
 - Communication of transit information to community

Voisey's Bay – ice conditions

Voisey's Bay – marine terminal

Voisey's Bay – Umiak I (PC4)

Voisey's Bay – 'bridge'

Arctic Islands; Exploration and Pilot Production

- Panarctic Oils exploration in Arctic islands
- 150 well, 38 offshore from thickened floating ice platforms
 - Pioneering engineering for use of ice to support operations (Hans Kivisild)
 - 1500 tonne rig on 6 m thickened ice for 3 months
- Extensive gas reserves discovered

Arctic Islands; ice platform well site

Arctic Islands; well locations

Significant Discovery Licences

Pilot Gas Production

Drake F-76 1978

Demonstrated offshore well completion

- Seabed BOP
- Flowline to shore
- Protection of shore approach from ice
- Trial production
- Plugged and abandoned1995

Arctic Pilot Project

- PetroCanada led project in early 1980s
- Export LNG from Arctic Islands to East Coast markets
- Challenges for design and engineering
 - Northern marine terminal for year round use
 - LNG plant
 - Icebreaking LNG carriers
 - Tanker routing in ice

Arctic Pilot Project

Arctic Pilot Project

- Project did not proceed but advanced technology
 - northern marine terminals for year round use
 - barge mounted plant for northern resource projects
 - simulation of arctic marine transportation systems
 - design of large icebreaking ships capable of carrying bulk liquid and dry cargoes
- Example of a visionary project leading to the advancement of technology and stimulating R&D closely coupled to needs

Mineral Resources

- North comprises 40% of land area
- Remote and largely unexplored
- Oil and gas; 1/3 of Canada's remaining resource in the North
- Significant mineral discovery and development already
- Great potential, but many challenges

Mineral Resources

Mineral Resources

- All mines and hydrocarbon developments have a finite life
 - Cominco lead-zinc mine at Little Cornwallis had a life of about 20 years
 - Nanisivik 25 years
 - finite life has an impact on the infrastructure developed for the project, decommissioning expected.
- While there is great potential for resource development, there are many factors which determine whether a resource can be developed:
 - World price for commodity
 - Access to transportation **
 - Logistics support **
 - Environmental impact assessment **
 - Local socio-economic factors (local acceptance) **
 - Availability of skilled workforce **
 - Availability of financing and Insurance**
- Presence of a resource is just a small part of the chain towards possible development.
- Engineering and technology can positively influence many of these factors.

Port Infrastructure

- Marine transport critical for much of North
 - Meagre port infrastructure
 - Small craft harbour Pangnirtung
 - Very high tides in eastern Arctic
- Most resupply goes in over the beach
 - Slow and expensive
- Ports
 - Nanisivik; 13 m, no infrastructure
 - Churchill; 4 berths, 12 m, rail connection
 - Tuktoyaktuk; 5 m, oil terminal

Port & Transportation

Barriers to Arctic Development

- Transportation
- Infrastructure
- Energy
- People

L'ACADÉMIE CANADIENNE DU GÉNIE

Chef de file en matière d'expertise-conseil en génie pour le Canada